
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Application of Game Trees and Alpha-Beta Pruning

in Optimizing Chess Engines
Henry Filberto Shenelo - 135231081,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523108@std.stei.itb.ac.id, 2henryfilbertoshenelo@gmail.com

Abstract— The complexity of the game of chess makes it a

standard benchmark for evaluating artificial intelligence (AI)

algorithms. With over 10120 possible board states, efficient

decision-making in chess requires advanced computational

techniques. Game trees and alpha-beta pruning are widely

used to optimize chess engines by reducing computational

overhead and enhancing search efficiency. Game trees

represent all possible game states, while alpha-beta pruning

eliminates irrelevant branches, allowing deeper searches

within a fixed timeframe. This paper explores the application

of game trees and alpha-beta pruning in optimizing chess

engines. The theoretical foundations of game trees and

minimax principles are examined, alongside alpha-beta

pruning as an optimization technique. The effectiveness of

these methods is demonstrated through case studies,

performance metrics, and implementation of a chess engine,

showing significant improvements in search depth and

computational efficiency. The results highlight the

advantages of combining game tree exploration with alpha-

beta pruning to optimize chess engines for real-time decision-

making.

Keywords— Chess engine, game tree, alpha-beta pruning,

minimax algorithm, artificial intelligence.

I. INTRODUCTION

The game of chess has long been a benchmark for

evaluating artificial intelligence (AI) algorithms due to its

complexity, strategic depth, and requirement for precise

decision-making. With over 10120 possible board states,

chess poses a formidable challenge for computational

techniques, necessitating efficient algorithms for move

selection and evaluation. Among the most widely used

approaches for optimizing decision-making in chess

engines are game tree exploration and alpha-beta pruning,

which allow AI to simulate potential moves and counter-

moves while minimizing computational overhead.

Game trees represent the foundation of chess AI,

modelling the sequence of possible moves as a branching

structure where nodes correspond to board states and edges

denote potential moves. By traversing this structure, a

chess engine can evaluate and compare various strategies

to determine the optimal sequence of moves. However, the

sheer size of the game tree often leads to combinatorial

explosion, making it impractical to evaluate all possible

moves within reasonable time constraints. To address this,

alpha-beta pruning is employed to significantly reduce the

number of nodes explored in the game tree without

compromising the accuracy of the decision-making

process.

Alpha-beta pruning enhances the performance of

minimax-based search algorithms by eliminating branches

of the game tree that cannot influence the final decision.

This optimization reduces computational complexity,

enabling chess engines to search deeper into the game tree

within a fixed timeframe. The combination of game tree

structures and alpha-beta pruning forms the backbone of

many state-of-the-art chess engines, facilitating real-time

decision-making and improved strategic play.

This paper explores the application of game trees and

alpha-beta pruning in optimizing chess engines,

highlighting their theoretical foundations, implementation

methodologies, and practical effectiveness. By analysing

case studies and performance metrics, we demonstrate how

these techniques enhance move evaluation, search

efficiency and reduce running time.

II. THEORETICAL BASIS

A. Graph

Graphs are commonly used to represent discrete objects

and the relationships between them. A Graph G is defined

as G = (V, E), where

1. V represents a non-empty set of vertices (nodes),

denoted a V = {v1, v2, …, vn}. The set V must not be

empty, ensuring that a graph must contain at least

one vertex.

2. E represents a set of edges that connect pairs of

vertices, denoted as E = {e1, e2, …, em}. The set E

can be empty, meaning a graph can exist without

any edges.

Based on the orientation of edges, graphs are classified into

two types:

1. Undirected graph, which is a graph where the
edges have no specific direction

2. Directed graph (or digraph), which is a graph

where each edge is assigned a specific direction.

mailto:113523108@std.stei.itb.ac.id
mailto:2henryfilbertoshenelo@gmail.com

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 2. Illustration of an undirected graph (G1) and a

directed graph (G2)

Source: [1]

A graph G is a connected graph if, for every pair of

vertices vi and vj in the set V, there exists a path connecting

vi and vj.

Figure 3. Illustration of connected graphs and

disconnected graph

Source: [1]

In a graph G, A path that starts and ends at the same vertex

is called a circuit or cycle.

Figure 4. Path (0, 4, 8, 5, 1, 0) forms a circuit

Source: [1]

B. Tree

A tree is an undirected graph that is connected and

contains no circuits (cycles). Thus, the three conditions for

a graph to be classified as a tree are: it must be undirected,

connected, and free of circuits (cycles). A rooted tree is a

tree in which one of its vertices is designated as the root,

and its edges are assigned directions to form a directed

graph.

Figure 5. Illustration of a rooted tree
Source: [3]

Rooted trees have several fundamental terminologies to

describe their structure and relationships:

1. Child and Parent

A vertex v1 is a child of vertex v2 if there is a

directed edge connecting v2 to v1. The originating

vertex v2 is the parent of v1.

2. Path

A path is a sequence of vertices and edges from a

starting vertex to a destination vertex.

3. Ancestor

A vertex v1 is an ancestor of vertex v2 if there is a

path from v1 to v2. In other words, the ancestors of

a vertex v2 are all vertices along the path from the

root to v2.

4. Sibling

Vertices v1 and v2 are called siblings if they share

the same parent.

5. Subtree

A subtree is a tree where its root is a child of

another vertex in the main tree, essentially

forming a subset of the original tree.

6. Degree

The degree of a vertex is the number of children

it has.

7. Leaf

A leaf is a vertex that has no children, i.e., it has a

degree of zero.

8. Internal node

An internal node is a vertex that has at least one

child.

9. Level

The level of a vertex is the distance from the root

to that vertex.

10. Height/Depth

The height/depth of a tree is the maximum

distance between the root and any leaf.

C. Game Tree

A game tree is a structure used to represent the dynamics

of a two-player game. Each node n in this tree corresponds

to a specific position or state in the game. For instance,

Figure 1 illustrates a game tree that shows the first two

levels of tic-tac-toe.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 6. The first two plies of the game tree for tic-

tac-toe.

Source: https://www.researchgate.net/figure/Part-of-the-

game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-

possible-moves-of_fig3_378437284

The two players involved are referred to as Max and

Min. The value of a position, denoted by f(p), represents

the maximum guaranteed payoff that Max can secure,

assuming both players play optimally. This value is

determined using the minimax principle, which defines the

game value based on the following:

1. If n is a Max node,

𝑓(𝑛) = 𝑚𝑎𝑥{𝑓(𝑐) | 𝑐 𝑖𝑠 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑛}

2. If n is a Min node,

𝑓(𝑛) = 𝑚𝑖𝑛{𝑓(𝑐) | 𝑐 𝑖𝑠𝑎 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑛}

This principle ensures that the game value at any node

reflects the optimal strategy for the player whose turn it is

to move. In essence, Max aims to maximize the game

value, while Min strives to minimize it. These rules

underpin the logic of algorithms designed to analyse and

compute strategies for such games.

D. Alpha-Beta Pruning

Alpha-beta pruning is an optimization technique

designed to enhance the search efficiency of the minimax

algorithm. This method works by pruning or eliminating

nodes that are deemed irrelevant during the minimax

search process. By doing so, the total number of nodes

evaluated is significantly reduced compared to the number

of nodes processed by the standard minimax algorithm

without pruning.

Alpha-beta pruning is based on the concept that during

a search, nodes can have two potential values: an optimistic

value and a pessimistic value, represented as alpha (α), the

maximum threshold, and beta (β), the minimum threshold.

These bounds are used to ensure that certain state changes

do not influence the final search results.

For example, suppose F is a function that seeks the

maximum value, G is a function that seeks the minimum

value, and P is a node in the search tree. If the minimax

algorithm evaluates F(p1) = -10 and determines G(p) >=

10, it is unnecessary to evaluate all sub nodes of another

node F(p2).

Figure 7. An Illustration of Alpha-Beta Pruning in the

Minimax Algorithm

The pseudocode for Alpha-Beta Pruning is given below

The algorithm recursively evaluates game positions,

pruning branches where it can be determined that the

current position is worse than a previously explored

position (i.e., pruning occurs if α ≥ β). This pruning

significantly reduces the number of nodes evaluated,

making the search more efficient.

III. IMPLEMENTATION

To demonstrate how Alpha-Beta pruning is used to

optimize chess engine, a simple chess engine is created

based on the following steps: (source:

https://lichess.org/@/JoaoTx/blog/making-a-simple-

chess-engine/fGBIAfGB).

First, an approach to implement a board score involves

assigning values to each piece and calculating the board's

function AlphaBeta(node, depth, α, β,

maximizingPlayer):

 if depth == 0 or node is a terminal node:

 return the heuristic value of node

 if maximizingPlayer:

 maxEval = -∞

 for each child of node:

 eval = AlphaBeta(child, depth - 1, α, β, false)

 maxEval = max(maxEval, eval)

 α = max(α, eval)

 if β <= α:
 break // Beta cut-off

 return maxEval

 else:

 minEval = ∞

 for each child of node:

 eval = AlphaBeta(child, depth - 1, α, β, true)

 minEval = min(minEval, eval)

 β = min(β, eval)

 if β <= α:

 break // Alpha cut-off

 return minEval

https://www.researchgate.net/figure/Part-of-the-game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-possible-moves-of_fig3_378437284
https://www.researchgate.net/figure/Part-of-the-game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-possible-moves-of_fig3_378437284
https://www.researchgate.net/figure/Part-of-the-game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-possible-moves-of_fig3_378437284
https://lichess.org/@/JoaoTx/blog/making-a-simple-chess-engine/fGBIAfGB
https://lichess.org/@/JoaoTx/blog/making-a-simple-chess-engine/fGBIAfGB

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

value by subtracting the total value of the Black pieces

from the total value of the White pieces. A pawn is worth

100, a bishop and a knight are worth 300 each, a rook is

worth 500, a queen is worth 900, and the king is worth

1000.

Then, minimax is implemented without Alpha-Beta

pruning to the position of the board up to a certain depth.

Next, as a comparison, Alpha-Beta pruning is used in

minimax algorithm. This is the implementation of the

Alpha-Beta pruning.

Finally, we can get all of the evaluation scores for every

possible move from the given position.

def simple_board_score(board):

 if board.is_checkmate():

 if board.turn:

 score = -np.inf #white was checkmated

 else:
 score = np.inf #black was checkmated

 elif its_draw(board):

 score = 0.0

 else:

 score = 0.0

 for (piece, value) in [(chess.PAWN, 100),

 (chess.BISHOP, 300),

 (chess.KING, 1000),

 (chess.QUEEN, 900),

 (chess.KNIGHT, 300),

 (chess.ROOK, 500)]:
 score = (score +

 len(board.pieces(piece,

chess.WHITE))*

 value)

 score = (score -

 len(board.pieces(piece,

chess.BLACK))*

 value)

 return score

def minimax (board, depth):

 if (depth==0) or (board.is_game_over()) or

(its_draw(board)):

 return simple_board_score(board)

 if board.turn: # White's turn

 opt_value = -np.inf

 for move in board.legal_moves:

 board.push(move)

 ## White maximizes the board score

 opt_value =
np.max([opt_value,minimax(board, depth - 1)])

 board.pop()

 return opt_value

 else: # Black's turn

 opt_value = np.inf

 for move in board.legal_moves:

 board.push(move)

 ## Black minimizes the board score

 opt_value =

np.min([opt_value,minimax(board, depth - 1)])

 board.pop()
 return opt_value

def alpha_beta(board, depth, alpha, beta):

 if (depth==0) or (board.is_game_over()) or

(its_draw(board)):

 return simple_board_score(board)

 if board.turn: # White's turn

 opt_value = -np.inf

 for move in board.legal_moves:

 board.push(move)
 ## White maximizes the board score

 opt_value = np.max([opt_value,

 alpha_beta(board, depth - 1, alpha,

beta)])

 board.pop()

 if opt_value > beta:

 break # beta cutoff

 alpha = np.max([alpha, opt_value])

 return opt_value

 else: # Black's turn

 opt_value = np.inf

 for move in board.legal_moves:
 board.push(move)

 ## Black minimizes the board score

 opt_value = np.min([opt_value,

 alpha_beta(board, depth - 1, alpha,

beta)])

 board.pop()

 if opt_value < alpha:

 break # alpha cutoff

 beta = min([beta, opt_value])

 return opt_value

def get_legal_moves_scores(board,depth):

 score = []

 moves = []

 for move in board.legal_moves:

 board.push(move)
 score.append(alpha_beta(board, depth, -np.inf,

np.inf))

 moves.append(move)

 board.pop()

 ## end for

 legal_moves_scores = pd.DataFrame(

 {'Score':score,'Move':moves}

).sort_values('Score')

 return legal_moves_scores

depth = 4

legal_moves_scores =
get_legal_moves_scores(board, depth)

for index, row in legal_moves_scores.iterrows():

 print(f"Move: {row['Move']}, Score:

{row['Score']}")

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

IV. RESULT

Based on the implementation, we try to evaluate the

board from Figure 8 and determine the best move for

White. The board evaluation involves calculating the

positional advantage using the assigned piece values and

assessing the outcomes of potential moves. The evaluation

helps identify the most favorable move for White at the

given depth.

Figure 8. Chess Board to be Evaluated

The game tree for depth = 1 is shown in Figure 9,

illustrating the initial set of possible moves for White.

Figure 9. All possible moves for White from the

position in Figure 8.

Using minimax, with or without alpha-beta pruning, does

not affect the outcome of the position evaluation. At a

depth of 3, we obtain the following results.

Table 1. Evaluation of every possible move for White

with depth = 3

Move Score

a1a7 -100.0

a1f1 0.0

a1c1 0.0

a1d1 0.0

a1e1 0.0

a1h1 0.0

a1g1 0.0

a1b1 100.0

a1a5 100.0

a1a2 100.0

a1a4 100.0

a1a3 100.0

c8d8 100.0

c8d7 100.0

b6a7 100.0

a1a6 Inf

Table 1 illustrates that the move Rook a1 to a6 is the

optimal move, yielding an evaluation score of infinity,

signifying a forced checkmate following the move. One of

the lines leading to checkmate can be seen on Table 2.

Table 2. Evaluation of the Best Moves from the Initial

Position (Figure 8) to the End of the Game

Move Score

a1a6 (White) inf

b7a6 (Black) inf

B6b7 (White)

(Checkmate)
inf

This result is consistent with the evaluation from

Stockfish 16 NNUE on Lichess, where the same move,

Rook a1 to a6, leads to a forced mate in 2 moves, at a depth

of 99. Interestingly, this comparison shows that achieving

the best move does not always require an extensive search

depth, especially in situations where there are limited
possible moves within the game tree. In such cases,

reducing the search depth does not compromise the

accuracy of the evaluation, thus allowing for significant

computational savings.

This highlights the importance of selective pruning in

reducing unnecessary calculations, particularly when the

game tree's branching factor is small, or the position is

already simplified. In this scenario, the search depth

required to find the best move can be relatively shallow,

and the algorithm can efficiently converge on the best

decision without an exhaustive exploration of all

possibilities.

To compare the running time and the number of nodes

evaluated on different depths, we run the program using

minimax without Alpha-Beta pruning implemented and

then compare it with the one using Alpha-Beta pruning.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Table 2. Running time without Alpha-Beta Pruning

Depth Running Time (s)

1 0.027

2 0.189

3 2.4

4 33

5 557.9

Table 3. Running time with Alpha-Beta Pruning

Depth Running Time (s)

1 0.017

2 0.189

3 1.2

4 15.4

5 162.5

Figure 10. Comparison of Running Time with and

without Alpha-Beta Pruning

Table 4. Total Nodes Visited without Alpha-Beta Pruning

Depth Total Nodes

1 17

2 144

3 988

4 23152

5 353292

Table 5. Total Nodes Visited with Alpha-Beta Pruning

Depth Total Nodes

1 17

2 130

3 2096

4 2883

5 30903

Figure 10. Comparison of Total Nodes Visited with and

without Alpha-Beta Pruning

The results demonstrate the significant performance

improvements brought by Alpha-Beta Pruning in the

context of search depth and node evaluation. Table 3

reveals a consistent reduction in running time with the use

of Alpha-Beta Pruning compared to the version without

pruning. For instance, at depth 5, the running time

decreased from 557.9 seconds without pruning to 162.5

seconds with pruning, indicating a notable reduction in

computational cost. The comparison of running times,

illustrated in Figure 10, further shows the efficiency of

Alpha-Beta Pruning, especially as the depth increases,

highlighting the exponential reduction in time complexity.

In terms of node evaluation, the tables clearly show the

effect of pruning in reducing the number of nodes visited

during the search process. Without Alpha-Beta Pruning

(Table 4), the number of nodes grows exponentially with

the depth, reaching a staggering 353,292 nodes at depth 5.

However, with Alpha-Beta Pruning (Table 5), the number

of nodes visited is significantly reduced—decreasing to

just 30,903 nodes at depth 5. This reduction not only

accelerates the search process but also makes the algorithm

more feasible for deeper searches, demonstrating the

pruning technique’s effectiveness in optimizing the

exploration of the search space.

V. CONCLUSION

The integration of game trees, minimax, and alpha-beta

pruning significantly enhances the performance of chess

engines by optimizing the decision-making process. Game

trees form the foundational structure, modeling the

sequence of moves and counter-moves, while the minimax

algorithm provides a framework for evaluating the best

possible moves under the assumption that both players act

optimally. Alpha-beta pruning optimizes minimax by

reducing the number of nodes that need to be evaluated,

thus eliminating irrelevant branches and improving

efficiency. This combination allows the chess engine to

explore deeper levels of the game tree, enhancing search

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

depth and reducing processing time without compromising

the accuracy of move evaluation. The findings confirm the

effectiveness of using alpha-beta pruning to optimize the

minimax algorithm, making it an essential tool for real-

time decision-making and strategic play in computational

chess.

VI. APPENDIX

To provide a clearer understanding of the concepts and

methods discussed in this paper, a supplementary video has

been prepared. Link: https://youtu.be/P6OwINVf6OU

VII. ACKNOWLEDGMENT

The Author would like to express gratitude to Mr.

Rinaldi Munir and Mr. Rila Mandala, the lecturers for

Discrete Math at Bandung Institute of Technology, for his

guidance and comprehensive teaching of the subject,

which provided the foundation for understanding the

concepts applied in this paper.

The Author also acknowledges the various sources of

information that greatly contributed to the completion of

this paper. These include academic journals, articles,

online resources, and publicly available code repositories,

all of which offered invaluable insights and practical tools

necessary for the development of this work.

.

REFERENCES

[1] R. Munir, "Graf Bagian 1," Department of Informatics, Institut

Teknologi Bandung, 2024-2025. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf.

[2] R. Munir, "Pohon Bagian 1," Department of Informatics, Institut

Teknologi Bandung, 2024-2025. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/23-Pohon-Bag1-2024.pdf.

[3] R. Munir, "Pohon Bagian 2," Department of Informatics, Institut

Teknologi Bandung, 2024-2025. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/24-Pohon-Bag2-2024.pdf.

[4] W. Pijls and A. de Bruin, "Game tree algorithms and solution trees,"

Journal of Artificial Intelligence, vol. 32, no. 4, pp. 305-312, 2021.

[5] Y. R. S. Kurniawan and M. M. Putra, "Perbandingan metode

optimasi algoritma minimax pada permainan catur," Alu, Jurnal

Sistem Informasi dan Teknologi, vol. 5, no. 1, 2024. [Online].

Available: https://journal.ubm.ac.id/index.php/alu.

[6] J. Tx, "Making a simple chess engine," Lichess.org, [Online].

Available: https://lichess.org/@/JoaoTx/blog/making-a-simple-

chess-engine/fGBIAfGB.

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Bandung, 04 January 2024

Henry Filberto Shenelo 13523108

https://youtu.be/P6OwINVf6OU
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://journal.ubm.ac.id/index.php/alu
https://lichess.org/@/JoaoTx/blog/making-a-simple-chess-engine/fGBIAfGB
https://lichess.org/@/JoaoTx/blog/making-a-simple-chess-engine/fGBIAfGB

	I. Introduction
	II. THEORETICAL BASIS
	B. Tree
	C. Game Tree
	D. Alpha-Beta Pruning

	III. IMPLEMENTATION
	IV. RESULT
	V. Conclusion
	VI. APPENDIX
	VII. Acknowledgment
	References
	STATEMENT

