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Abstract— The complexity of the game of chess makes it a 

standard benchmark for evaluating artificial intelligence (AI) 

algorithms. With over 10120 possible board states, efficient 

decision-making in chess requires advanced computational 

techniques. Game trees and alpha-beta pruning are widely 

used to optimize chess engines by reducing computational 

overhead and enhancing search efficiency. Game trees 

represent all possible game states, while alpha-beta pruning 

eliminates irrelevant branches, allowing deeper searches 

within a fixed timeframe. This paper explores the application 

of game trees and alpha-beta pruning in optimizing chess 

engines. The theoretical foundations of game trees and 

minimax principles are examined, alongside alpha-beta 

pruning as an optimization technique. The effectiveness of 

these methods is demonstrated through case studies, 

performance metrics, and implementation of a chess engine, 

showing significant improvements in search depth and 

computational efficiency. The results highlight the 

advantages of combining game tree exploration with alpha-

beta pruning to optimize chess engines for real-time decision-

making. 

Keywords— Chess engine, game tree, alpha-beta pruning, 

minimax algorithm, artificial intelligence.  

 

 

I.   INTRODUCTION 

The game of chess has long been a benchmark for 

evaluating artificial intelligence (AI) algorithms due to its 

complexity, strategic depth, and requirement for precise 

decision-making. With over 10120 possible board states, 

chess poses a formidable challenge for computational 

techniques, necessitating efficient algorithms for move 

selection and evaluation. Among the most widely used 

approaches for optimizing decision-making in chess 

engines are game tree exploration and alpha-beta pruning, 

which allow AI to simulate potential moves and counter-

moves while minimizing computational overhead. 

Game trees represent the foundation of chess AI, 

modelling the sequence of possible moves as a branching 

structure where nodes correspond to board states and edges 

denote potential moves. By traversing this structure, a 

chess engine can evaluate and compare various strategies 

to determine the optimal sequence of moves. However, the 

sheer size of the game tree often leads to combinatorial 

explosion, making it impractical to evaluate all possible 

moves within reasonable time constraints. To address this, 

alpha-beta pruning is employed to significantly reduce the 

number of nodes explored in the game tree without 

compromising the accuracy of the decision-making 

process. 

Alpha-beta pruning enhances the performance of 

minimax-based search algorithms by eliminating branches 

of the game tree that cannot influence the final decision. 

This optimization reduces computational complexity, 

enabling chess engines to search deeper into the game tree 

within a fixed timeframe. The combination of game tree 

structures and alpha-beta pruning forms the backbone of 

many state-of-the-art chess engines, facilitating real-time 

decision-making and improved strategic play. 

This paper explores the application of game trees and 

alpha-beta pruning in optimizing chess engines, 

highlighting their theoretical foundations, implementation 

methodologies, and practical effectiveness. By analysing 

case studies and performance metrics, we demonstrate how 

these techniques enhance move evaluation, search 

efficiency and reduce running time. 

 

II.  THEORETICAL BASIS 

A. Graph 

Graphs are commonly used to represent discrete objects 

and the relationships between them. A Graph G is defined 

as G = (V, E), where 

1. V represents a non-empty set of vertices (nodes), 

denoted a V = {v1, v2, …, vn}. The set V must not be 

empty, ensuring that a graph must contain at least 

one vertex. 

2. E represents a set of edges that connect pairs of 

vertices, denoted as E = {e1, e2, …, em}. The set E 

can be empty, meaning a graph can exist without 

any edges. 

 

Based on the orientation of edges, graphs are classified into 

two types: 

1. Undirected graph, which is a graph where the 
edges have no specific direction  

2. Directed graph (or digraph), which is a graph 

where each edge is assigned a specific direction. 
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Figure 2. Illustration of an undirected graph (G1) and a 

directed graph (G2) 

Source: [1] 

 

A graph G is a connected graph if, for every pair of 

vertices vi and vj in the set V, there exists a path connecting 

vi and vj. 

 

 

 

 

 

 

 

 

Figure 3. Illustration of connected graphs and 

disconnected graph 

Source: [1] 

 

In a graph G, A path that starts and ends at the same vertex 

is called a circuit or cycle. 

 

 

 

 
 

 

 

 

 

 

Figure 4. Path (0, 4, 8, 5, 1, 0) forms a circuit 

Source: [1] 

 

B. Tree 

A tree is an undirected graph that is connected and 

contains no circuits (cycles). Thus, the three conditions for 

a graph to be classified as a tree are: it must be undirected, 

connected, and free of circuits (cycles). A rooted tree is a 

tree in which one of its vertices is designated as the root, 

and its edges are assigned directions to form a directed 

graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Illustration of a rooted tree 
Source: [3] 

 

Rooted trees have several fundamental terminologies to 

describe their structure and relationships: 

1. Child and Parent 

A vertex v1 is a child of vertex v2 if there is a 

directed edge connecting v2 to v1. The originating 

vertex v2 is the parent of v1. 

2. Path 

A path is a sequence of vertices and edges from a 

starting vertex to a destination vertex. 

3. Ancestor 

A vertex v1 is an ancestor of vertex v2 if there is a 

path from v1 to v2. In other words, the ancestors of 

a vertex v2 are all vertices along the path from the 

root to v2. 

4. Sibling 

Vertices v1 and v2 are called siblings if they share 

the same parent. 

5. Subtree 

A subtree is a tree where its root is a child of 

another vertex in the main tree, essentially 

forming a subset of the original tree. 

6. Degree 

The degree of a vertex is the number of children 

it has. 

7. Leaf 

A leaf is a vertex that has no children, i.e., it has a 

degree of zero. 

8. Internal node 

An internal node is a vertex that has at least one 

child. 

9. Level 

The level of a vertex is the distance from the root 

to that vertex. 

10. Height/Depth 

The height/depth of a tree is the maximum 

distance between the root and any leaf. 

 

C. Game Tree 

A game tree is a structure used to represent the dynamics 

of a two-player game. Each node n in this tree corresponds 

to a specific position or state in the game. For instance, 

Figure 1 illustrates a game tree that shows the first two 

levels of tic-tac-toe. 
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Figure 6. The first two plies of the game tree for tic-

tac-toe. 

Source: https://www.researchgate.net/figure/Part-of-the-

game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-

possible-moves-of_fig3_378437284  

 

The two players involved are referred to as Max and 

Min. The value of a position, denoted by f(p), represents 

the maximum guaranteed payoff that Max can secure, 

assuming both players play optimally. This value is 

determined using the minimax principle, which defines the 

game value based on the following: 

1. If n is a Max node,  

𝑓(𝑛)  =  𝑚𝑎𝑥{𝑓(𝑐) | 𝑐 𝑖𝑠 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑛} 

2. If n is a Min node,  

𝑓(𝑛)  =  𝑚𝑖𝑛{𝑓(𝑐) | 𝑐 𝑖𝑠𝑎 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑛} 

 

This principle ensures that the game value at any node 

reflects the optimal strategy for the player whose turn it is 

to move. In essence, Max aims to maximize the game 

value, while Min strives to minimize it. These rules 

underpin the logic of algorithms designed to analyse and 

compute strategies for such games. 

 

D. Alpha-Beta Pruning 

Alpha-beta pruning is an optimization technique 

designed to enhance the search efficiency of the minimax 

algorithm. This method works by pruning or eliminating 

nodes that are deemed irrelevant during the minimax 

search process. By doing so, the total number of nodes 

evaluated is significantly reduced compared to the number 

of nodes processed by the standard minimax algorithm 

without pruning. 

Alpha-beta pruning is based on the concept that during 

a search, nodes can have two potential values: an optimistic 

value and a pessimistic value, represented as alpha (α), the 

maximum threshold, and beta (β), the minimum threshold. 

These bounds are used to ensure that certain state changes 

do not influence the final search results. 

For example, suppose F is a function that seeks the 

maximum value, G is a function that seeks the minimum 

value, and P is a node in the search tree. If the minimax 

algorithm evaluates F(p1) = -10 and determines G(p) >= 

10, it is unnecessary to evaluate all sub nodes of another 

node F(p2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. An Illustration of Alpha-Beta Pruning in the 

Minimax Algorithm 

 

The pseudocode for Alpha-Beta Pruning is given below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm recursively evaluates game positions, 

pruning branches where it can be determined that the 

current position is worse than a previously explored 

position (i.e., pruning occurs if α ≥ β). This pruning 

significantly reduces the number of nodes evaluated, 

making the search more efficient. 

 

III.   IMPLEMENTATION 

To demonstrate how Alpha-Beta pruning is used to 

optimize chess engine, a simple chess engine is created 

based on the following steps: (source: 

https://lichess.org/@/JoaoTx/blog/making-a-simple-

chess-engine/fGBIAfGB ). 

 

First, an approach to implement a board score involves 

assigning values to each piece and calculating the board's 

function AlphaBeta(node, depth, α, β, 

maximizingPlayer): 

    if depth == 0 or node is a terminal node: 

        return the heuristic value of node 

 

    if maximizingPlayer: 

        maxEval = -∞ 

        for each child of node: 

            eval = AlphaBeta(child, depth - 1, α, β, false) 

            maxEval = max(maxEval, eval) 

            α = max(α, eval) 

            if β <= α: 
                break  // Beta cut-off 

        return maxEval 

    else: 

        minEval = ∞ 

        for each child of node: 

            eval = AlphaBeta(child, depth - 1, α, β, true) 

            minEval = min(minEval, eval) 

            β = min(β, eval) 

            if β <= α: 

                break  // Alpha cut-off 

        return minEval 

https://www.researchgate.net/figure/Part-of-the-game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-possible-moves-of_fig3_378437284
https://www.researchgate.net/figure/Part-of-the-game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-possible-moves-of_fig3_378437284
https://www.researchgate.net/figure/Part-of-the-game-tree-for-tic-tac-toe-ie-the-tree-that-follows-all-possible-moves-of_fig3_378437284
https://lichess.org/@/JoaoTx/blog/making-a-simple-chess-engine/fGBIAfGB
https://lichess.org/@/JoaoTx/blog/making-a-simple-chess-engine/fGBIAfGB
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value by subtracting the total value of the Black pieces 

from the total value of the White pieces. A pawn is worth 

100, a bishop and a knight are worth 300 each, a rook is 

worth 500, a queen is worth 900, and the king is worth 

1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Then, minimax is implemented without Alpha-Beta 

pruning to the position of the board up to a certain depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, as a comparison, Alpha-Beta pruning is used in 

minimax algorithm. This is the implementation of the 

Alpha-Beta pruning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we can get all of the evaluation scores for every 

possible move from the given position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

def simple_board_score(board): 

    if board.is_checkmate(): 

        if board.turn: 

            score = -np.inf #white was checkmated 

        else: 
            score = np.inf #black was checkmated 

    elif its_draw(board): 

        score = 0.0 

    else: 

        score = 0.0 

        for (piece, value) in [(chess.PAWN, 100),  

                               (chess.BISHOP, 300),  

                               (chess.KING, 1000),  

                               (chess.QUEEN, 900),  

                               (chess.KNIGHT, 300), 

                               (chess.ROOK, 500)]: 
            score = (score +  

                     len(board.pieces(piece, 

chess.WHITE))* 

                     value) 

            score = (score -  

                     len(board.pieces(piece, 

chess.BLACK))* 

                     value) 

    return score 

def minimax (board, depth): 

    if (depth==0) or (board.is_game_over()) or 

(its_draw(board)): 

        return simple_board_score(board) 

    if board.turn: # White's turn 

        opt_value = -np.inf 

        for move in board.legal_moves: 

            board.push(move) 

            ## White maximizes the board score 

            opt_value = 
np.max([opt_value,minimax(board, depth - 1)]) 

            board.pop() 

        return opt_value 

    else: # Black's turn 

        opt_value = np.inf 

        for move in board.legal_moves:  

            board.push(move) 

            ## Black minimizes the board score 

            opt_value = 

np.min([opt_value,minimax(board, depth - 1)]) 

            board.pop() 
        return opt_value 

 

def alpha_beta(board, depth, alpha, beta): 

    if (depth==0) or (board.is_game_over()) or 

(its_draw(board)): 

        return simple_board_score(board) 

    if board.turn: # White's turn 

        opt_value = -np.inf 

        for move in board.legal_moves: 

            board.push(move) 
            ## White maximizes the board score 

            opt_value = np.max([opt_value,  

                          alpha_beta(board, depth - 1, alpha, 

beta)]) 

            board.pop() 

            if opt_value > beta: 

                break # beta cutoff 

            alpha = np.max([alpha, opt_value]) 

        return opt_value 

    else: # Black's turn 

        opt_value = np.inf 

        for move in board.legal_moves:  
            board.push(move) 

            ## Black minimizes the board score 

            opt_value = np.min([opt_value,  

                          alpha_beta(board, depth - 1, alpha, 

beta)]) 

            board.pop() 

            if opt_value < alpha: 

                break # alpha cutoff 

            beta = min([beta, opt_value]) 

        return opt_value 

 

def get_legal_moves_scores(board,depth): 

    score = [] 

    moves = [] 

    for move in board.legal_moves:  

        board.push(move) 
        score.append(alpha_beta(board, depth, -np.inf, 

np.inf)) 

        moves.append(move) 

        board.pop() 

    ## end for 

    legal_moves_scores = pd.DataFrame( 

                          {'Score':score,'Move':moves} 

                        ).sort_values('Score') 

    return legal_moves_scores 

depth = 4 

legal_moves_scores = 
get_legal_moves_scores(board, depth) 

 

for index, row in legal_moves_scores.iterrows(): 

    print(f"Move: {row['Move']}, Score: 

{row['Score']}") 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

IV.   RESULT 

Based on the implementation, we try to evaluate the 

board from Figure 8 and determine the best move for 

White. The board evaluation involves calculating the 

positional advantage using the assigned piece values and 

assessing the outcomes of potential moves. The evaluation 

helps identify the most favorable move for White at the 

given depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Chess Board to be Evaluated 

 

The game tree for depth = 1 is shown in Figure 9, 

illustrating the initial set of possible moves for White. 

 
 

Figure 9. All possible moves for White from the 

position in Figure 8. 

 

Using minimax, with or without alpha-beta pruning, does 

not affect the outcome of the position evaluation. At a 

depth of 3, we obtain the following results. 
 

 

 

Table 1. Evaluation of every possible move for White 

with depth = 3 

 

Move Score 

a1a7   -100.0 

a1f1   0.0 

a1c1   0.0 

a1d1   0.0 

a1e1   0.0 

a1h1   0.0 

a1g1   0.0 

a1b1   100.0 

a1a5   100.0 

a1a2   100.0 

a1a4   100.0 

a1a3   100.0 

c8d8   100.0 

c8d7   100.0 

b6a7   100.0 

a1a6   Inf 

 

Table 1 illustrates that the move Rook a1 to a6 is the 

optimal move, yielding an evaluation score of infinity, 

signifying a forced checkmate following the move. One of 

the lines leading to checkmate can be seen on Table 2. 
 

Table 2. Evaluation of the Best Moves from the Initial 

Position (Figure 8) to the End of the Game 

 

Move Score 

a1a6 (White) inf 

b7a6 (Black) inf 

B6b7 (White) 

(Checkmate) 
inf 

 

This result is consistent with the evaluation from 

Stockfish 16 NNUE on Lichess, where the same move, 

Rook a1 to a6, leads to a forced mate in 2 moves, at a depth 

of 99. Interestingly, this comparison shows that achieving 

the best move does not always require an extensive search 

depth, especially in situations where there are limited 
possible moves within the game tree. In such cases, 

reducing the search depth does not compromise the 

accuracy of the evaluation, thus allowing for significant 

computational savings. 

This highlights the importance of selective pruning in 

reducing unnecessary calculations, particularly when the 

game tree's branching factor is small, or the position is 

already simplified. In this scenario, the search depth 

required to find the best move can be relatively shallow, 

and the algorithm can efficiently converge on the best 

decision without an exhaustive exploration of all 

possibilities. 
 

To compare the running time and the number of nodes 

evaluated on different depths, we run the program using 

minimax without Alpha-Beta pruning implemented and 

then compare it with the one using Alpha-Beta pruning. 
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Table 2. Running time without Alpha-Beta Pruning 

 

Depth Running Time (s) 

1 0.027 

2 0.189 

3 2.4 

4 33 

5 557.9 

 

Table 3. Running time with Alpha-Beta Pruning 

 

Depth Running Time (s) 

1 0.017 

2 0.189 

3 1.2 

4 15.4 

5 162.5 

 

 
Figure 10. Comparison of Running Time with and 

without Alpha-Beta Pruning 

 

Table 4. Total Nodes Visited without Alpha-Beta Pruning 

 

Depth Total Nodes 

1 17 

2 144 

3 988 

4 23152 

5 353292 

 
Table 5. Total Nodes Visited with Alpha-Beta Pruning 

 

Depth Total Nodes 

1 17 

2 130 

3 2096 

4 2883 

5 30903 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparison of Total Nodes Visited with and 

without Alpha-Beta Pruning 

 

The results demonstrate the significant performance 

improvements brought by Alpha-Beta Pruning in the 

context of search depth and node evaluation. Table 3 

reveals a consistent reduction in running time with the use 

of Alpha-Beta Pruning compared to the version without 

pruning. For instance, at depth 5, the running time 

decreased from 557.9 seconds without pruning to 162.5 

seconds with pruning, indicating a notable reduction in 

computational cost. The comparison of running times, 

illustrated in Figure 10, further shows the efficiency of 

Alpha-Beta Pruning, especially as the depth increases, 

highlighting the exponential reduction in time complexity. 

In terms of node evaluation, the tables clearly show the 

effect of pruning in reducing the number of nodes visited 

during the search process. Without Alpha-Beta Pruning 

(Table 4), the number of nodes grows exponentially with 

the depth, reaching a staggering 353,292 nodes at depth 5. 

However, with Alpha-Beta Pruning (Table 5), the number 

of nodes visited is significantly reduced—decreasing to 

just 30,903 nodes at depth 5. This reduction not only 

accelerates the search process but also makes the algorithm 

more feasible for deeper searches, demonstrating the 

pruning technique’s effectiveness in optimizing the 

exploration of the search space. 

 

V.   CONCLUSION 

The integration of game trees, minimax, and alpha-beta 

pruning significantly enhances the performance of chess 

engines by optimizing the decision-making process. Game 

trees form the foundational structure, modeling the 

sequence of moves and counter-moves, while the minimax 

algorithm provides a framework for evaluating the best 

possible moves under the assumption that both players act 

optimally. Alpha-beta pruning optimizes minimax by 

reducing the number of nodes that need to be evaluated, 

thus eliminating irrelevant branches and improving 

efficiency. This combination allows the chess engine to 

explore deeper levels of the game tree, enhancing search 
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depth and reducing processing time without compromising 

the accuracy of move evaluation. The findings confirm the 

effectiveness of using alpha-beta pruning to optimize the 

minimax algorithm, making it an essential tool for real-

time decision-making and strategic play in computational 

chess. 

 

VI.   APPENDIX 

To provide a clearer understanding of the concepts and 

methods discussed in this paper, a supplementary video has 

been prepared. Link: https://youtu.be/P6OwINVf6OU  
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